Search results
Results from the WOW.Com Content Network
For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...
CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.
For example it is common to take A to be Z/2Z, so that coefficients are modulo 2. This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers b i of X and the Betti numbers b i,F with coefficients in a field F.
In this table, the entries are either a) the trivial group 0, the infinite cyclic group Z, b) the finite cyclic groups of order n (written as Z n), or c) the direct products of such groups (written, for example, as Z 24 ×Z 3 or Z 2 2 = Z 2 ×Z 2). Extended tables of homotopy groups of spheres are given at the end of the article.
Through further reductions, it is possible to identify the homology of with the cohomology of . This is useful in algebraic geometry for computing the cohomology groups of projective varieties , and is exploited for constructing a basis of the Hodge structure of hypersurfaces of degree d {\displaystyle d} using the Jacobian ring .
Remarkably, Whitehead's theorem says that for CW complexes, a weak homotopy equivalence and a homotopy equivalence are the same thing. Another important result is the approximation theorem. First, the homotopy category of spaces is the category where an object is a space but a morphism is the homotopy class of a map. Then
Two pairs (X 1, A) and (X 2, A) are said to be equivalent, if there is a simple homotopy equivalence between X 1 and X 2 relative to A. The set of such equivalence classes form a group where the addition is given by taking union of X 1 and X 2 with common subspace A. This group is natural isomorphic to the Whitehead group Wh(A) of the CW-complex A.
A group G is called the direct sum [1] [2] of two subgroups H 1 and H 2 if each H 1 and H 2 are normal subgroups of G, the subgroups H 1 and H 2 have trivial intersection (i.e., having only the identity element of G in common), G = H 1, H 2 ; in other words, G is generated by the subgroups H 1 and H 2.