enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oil drop experiment - Wikipedia

    en.wikipedia.org/wiki/Oil_drop_experiment

    Now the field is turned back on, and the electric force on the drop is =, where q is the charge on the oil drop and E is the electric field between the plates. For parallel plates =, where V is the potential difference and d is the distance between the plates.

  3. Double layer forces - Wikipedia

    en.wikipedia.org/wiki/Double_layer_forces

    Pictorial representation of two interacting charged plates across an electrolyte solution. The distance between the plates is abbreviated by h. The most popular model to describe the electrical double layer is the Poisson-Boltzmann (PB) model. This model can be equally used to evaluate double layer forces.

  4. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    Assuming infinite planes, the magnitude of the electric field E is: =, where ΔV is the potential difference between the plates and d is the distance separating the plates. The negative sign arises as positive charges repel, so a positive charge will experience a force away from the positively charged plate, in the opposite direction to that in ...

  5. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero. In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only ...

  6. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.

  7. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  8. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.

  9. Electric displacement field - Wikipedia

    en.wikipedia.org/wiki/Electric_displacement_field

    In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .