enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fractal analysis - Wikipedia

    en.wikipedia.org/wiki/Fractal_analysis

    Fractal branching of trees. Fractal analysis is assessing fractal characteristics of data.It consists of several methods to assign a fractal dimension and other fractal characteristics to a dataset which may be a theoretical dataset, or a pattern or signal extracted from phenomena including topography, [1] natural geometric objects, ecology and aquatic sciences, [2] sound, market fluctuations ...

  3. Analysis on fractals - Wikipedia

    en.wikipedia.org/wiki/Analysis_on_fractals

    Analysis on fractals or calculus on fractals is a generalization of calculus on smooth manifolds to calculus on fractals. The theory describes dynamical phenomena which occur on objects modelled by fractals.

  4. Fractal - Wikipedia

    en.wikipedia.org/wiki/Fractal

    SierpiƄski Carpet - Infinite perimeter and zero area Mandelbrot set at islands The Mandelbrot set: its boundary is a fractal curve with Hausdorff dimension 2. (Note that the colored sections of the image are not actually part of the Mandelbrot Set, but rather they are based on how quickly the function that produces it diverges.)

  5. Seven states of randomness - Wikipedia

    en.wikipedia.org/wiki/Seven_states_of_randomness

    The seven states of randomness in probability theory, fractals and risk analysis are extensions of the concept of randomness as modeled by the normal distribution. These seven states were first introduced by Benoît Mandelbrot in his 1997 book Fractals and Scaling in Finance, which applied fractal analysis to the study of risk and randomness. [1]

  6. Lacunarity - Wikipedia

    en.wikipedia.org/wiki/Lacunarity

    The earliest reference to the term in geometry is usually attributed to Benoit Mandelbrot, who, in 1983 or perhaps as early as 1977, introduced it as, in essence, an adjunct to fractal analysis. [4] Lacunarity analysis is now used to characterize patterns in a wide variety of fields and has application in multifractal analysis [ 5 ] [ 6 ] in ...

  7. Multifractal system - Wikipedia

    en.wikipedia.org/wiki/Multifractal_system

    The image shows D (Q) spectra from a multifractal analysis of binary images of non-, mono-, and multi-fractal sets. As is the case in the sample images, non- and mono-fractals tend to have flatter D (Q) spectra than multifractals. The generalized dimension also gives important specific information.

  8. Fractal dimension - Wikipedia

    en.wikipedia.org/wiki/Fractal_dimension

    The theoretical fractal dimension for this fractal is 5/3 ≈ 1.67; its empirical fractal dimension from box counting analysis is ±1% [8] using fractal analysis software. A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale.

  9. Fractal dimension on networks - Wikipedia

    en.wikipedia.org/wiki/Fractal_dimension_on_networks

    Fractal analysis is useful in the study of complex networks, present in both natural and artificial systems such as computer systems, brain and social networks, allowing further development of the field in network science.