Search results
Results from the WOW.Com Content Network
The investor lives from time 0 to time T; their wealth at time T is denoted W T. He starts with a known initial wealth W 0 (which may include the present value of wage income). At time t he must choose what amount of his wealth to consume, c t , and what fraction of wealth to invest in a stock portfolio, π t (the remaining fraction 1 − π t ...
An alternative terminology uses continuous parameter as being more inclusive. [1] A more restricted class of processes are the continuous stochastic processes; here the term often (but not always [2]) implies both that the index variable is continuous and that sample paths of the process are continuous. Given the possible confusion, caution is ...
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...
Block diagram illustrating the superposition principle and time invariance for a deterministic continuous-time single-input single-output system. The system satisfies the superposition principle and is time-invariant if and only if y 3 (t) = a 1 y 1 (t – t 0) + a 2 y 2 (t – t 0) for all time t, for all real constants a 1, a 2, t 0 and for all inputs x 1 (t), x 2 (t). [1]
Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.
In probability theory, a continuous stochastic process is a type of stochastic process that may be said to be "continuous" as a function of its "time" or index parameter. Continuity is a nice property for (the sample paths of) a process to have, since it implies that they are well-behaved in some sense, and, therefore, much easier to analyze.
For simplicity, the following descriptions focus on continuous-time and discrete-time linear systems. Mathematically, this means that for a causal linear system to be stable all of the poles of its transfer function must have negative-real values, i.e. the real part of each pole must be less than zero.
One example is when a discrete-time or continuous-time stochastic process is said to be stationary in the wide sense, then the process has a finite second moment for all and the covariance of the two random variables and + depends only on the number for all .