enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  3. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    It appears in unlikely fields such as game theory. In economics, Brouwer's fixed-point theorem and its extension, the Kakutani fixed-point theorem, play a central role in the proof of existence of general equilibrium in market economies as developed in the 1950s by economics Nobel prize winners Kenneth Arrow and Gérard Debreu.

  4. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .

  5. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    In projective geometry, a fixed point of a projectivity has been called a double point. [8] [9] In economics, a Nash equilibrium of a game is a fixed point of the game's best response correspondence. John Nash exploited the Kakutani fixed-point theorem for his seminal paper that won him the Nobel prize in economics.

  6. Fixed-point computation - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_computation

    Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.

  7. Kakutani fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Kakutani_fixed-point_theorem

    The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.

  8. Nash equilibrium - Wikipedia

    en.wikipedia.org/wiki/Nash_equilibrium

    In the matching pennies game, player A loses a point to B if A and B play the same strategy and wins a point from B if they play different strategies. To compute the mixed-strategy Nash equilibrium, assign A the probability p {\displaystyle p} of playing H and ( 1 − p ) {\displaystyle (1-p)} of playing T, and assign B the probability q ...

  9. Correlated equilibrium - Wikipedia

    en.wikipedia.org/wiki/Correlated_equilibrium

    In game theory, a correlated equilibrium is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. [ 1 ] [ 2 ] The idea is that each player chooses their action according to their private observation of the value of the same public signal.