Search results
Results from the WOW.Com Content Network
In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running ...
A two-way deterministic finite automaton (2DFA) is an abstract machine, a generalized version of the deterministic finite automaton (DFA) which can revisit characters already processed. As in a DFA, there are a finite number of states with transitions between them based on the current character, but each transition is also labelled with a value ...
A common deterministic automaton is a deterministic finite automaton (DFA) which is a finite state machine, where for each pair of state and input symbol there is one and only one transition to a next state.
An example of an accepting state appears in Fig. 5: a deterministic finite automaton (DFA) that detects whether the binary input string contains an even number of 0s. S 1 (which is also the start state) indicates the state at which an even number of 0s has been input. S 1 is therefore an accepting state. This acceptor will finish in an accept ...
In particular, every DFA is also an NFA. Sometimes the term NFA is used in a narrower sense, referring to an NFA that is not a DFA, but not in this article. Using the subset construction algorithm, each NFA can be translated to an equivalent DFA; i.e., a DFA recognizing the same formal language. [1] Like DFAs, NFAs only recognize regular languages.
Brzozowski's algorithm for DFA minimization uses the powerset construction, twice. It converts the input DFA into an NFA for the reverse language, by reversing all its arrows and exchanging the roles of initial and accepting states, converts the NFA back into a DFA using the powerset construction, and then repeats its process.
At each step of the simulation, the active set of NFA states forms a new DFA state. If the new state is identical to an existing DFA state, it is discarded and replaced with the existing one, and the current branch of simulation terminates. Otherwise the new state is added to the growing set of DFA states and simulation from this state continues.
Descriptions of real machine programs using simpler abstract models are often much more complex than descriptions using Turing machines. For example, a Turing machine describing an algorithm may have a few hundred states, while the equivalent deterministic finite automaton (DFA) on a given real machine has quadrillions.