Search results
Results from the WOW.Com Content Network
However, it is useful as an intermediate step to calculate multiplicity as a function of and . This approach shows that the number of available macrostates is N + 1 . For example, in a very small system with N = 2 dipoles, there are three macrostates, corresponding to N ↑ = 0 , 1 , 2. {\displaystyle N_{\uparrow }=0,1,2.}
In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. [1] Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results.
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, [1] chemistry, neuroscience, [2] computer science, [3] [4] information theory [5] and ...
For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system. The limit of the reduced mass formula as one mass goes to infinity is the smaller mass, thus this approximation is used to ease calculations, especially when the larger ...
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
In quantum statistical mechanics (which is the quantum version of classical statistical mechanics), the H-function is the function: [24] = , where summation runs over all possible distinct states of the system, and p i is the probability that the system could be found in the i-th state.
In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2] [3]
Although the LSZ reduction formula cannot handle bound states, massless particles and topological solitons, it can be generalized to cover bound states, by use of composite fields which are often nonlocal. Furthermore, the method, or variants thereof, have turned out to be also fruitful in other fields of theoretical physics.