Search results
Results from the WOW.Com Content Network
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.
The diagram was created in 1904, when Richard Mollier plotted the total heat [4] H against entropy S. [5] [1]At the 1923 Thermodynamics Conference held in Los Angeles it was decided to name, in his honor, as a "Mollier diagram" any thermodynamic diagram using the enthalpy as one of its axes.
Work and heat are not thermodynamic properties, but rather process quantities: flows of energy across a system boundary. Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat.
Thermal engineering may be practiced by mechanical engineers and chemical engineers. One or more of the following disciplines may be involved in solving a particular thermal engineering problem: thermodynamics, fluid mechanics, heat transfer, or mass transfer. One branch of knowledge used frequently in thermal engineering is that of thermofluids.
In general, works using the term "thermal resistance" are more engineering-oriented, whereas works using the term thermal conductivity are more [pure-]physics-oriented. The following books are representative, but may be easily substituted. Terry M. Tritt, ed. (2004). Thermal Conductivity: Theory, Properties, and Applications. Springer Science ...
In thermodynamics, a quasi-static process, also known as a quasi-equilibrium process (from Latin quasi, meaning ‘as if’ [1]), is a thermodynamic process that happens slowly enough for the system to remain in internal physical (but not necessarily chemical) thermodynamic equilibrium.
Applied Thermal Engineering is a peer-reviewed scientific journal covering all aspects of the thermal engineering of advanced processes, including process integration, intensification, and development, together with the application of thermal equipment in conventional process plants, which includes its use for heat recovery.
In physics and thermodynamics, the Redlich–Kwong equation of state is an empirical, algebraic equation that relates temperature, pressure, and volume of gases. It is generally more accurate than the van der Waals equation and the ideal gas equation at temperatures above the critical temperature.