Search results
Results from the WOW.Com Content Network
File:Bode plot template.pdf. Size of this JPG preview of this PDF file: 423 × 599 pixels. Other resolutions: 169 × 240 pixels | 339 × 480 pixels | 542 × 768 pixels | 1,239 × 1,754 pixels. This is a file from the Wikimedia Commons. Information from its description page there is shown below.
Definition. The Bode plot for a linear, time-invariant system with transfer function ( being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function of frequency (with being the imaginary unit). The -axis of the magnitude plot is logarithmic and the ...
Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so labeled separations are multiplicative factors. For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode ...
A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.
Phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input. For example, if the amplifier's open-loop gain crosses 0 dB at a ...
The Bode plot of a first-order low-pass filter. The frequency response of the Butterworth filter is maximally flat (i.e., has no ripples) in the passband and rolls off towards zero in the stopband. [2] When viewed on a logarithmic Bode plot, the response slopes off linearly towards negative
Classical control theory is a branch of control theory that deals with the behavior of dynamical systems with inputs, and how their behavior is modified by feedback, using the Laplace transform as a basic tool to model such systems. The usual objective of control theory is to control a system, often called the plant, so its output follows a ...
A simple example of this is a pure time delay of time T, which has amplitude 1 at any frequency regardless of T, but has a phase dependent on T (specifically, phase = 2π × T × frequency). There is, however, a unique amplitude-vs-phase relation in the special case of a minimum phase system, [9] sometimes called the Bode gain–phase relation.