Search results
Results from the WOW.Com Content Network
Cupcakes baked with baking soda as a raising agent. Sodium bicarbonate (IUPAC name: sodium hydrogencarbonate [9]), commonly known as baking soda or bicarbonate of soda, is a chemical compound with the formula NaHCO 3.
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
The Solvay process or ammonia–soda process is the major industrial process for the production of sodium carbonate (soda ash, Na 2 CO 3).The ammonia–soda process was developed into its modern form by the Belgian chemist Ernest Solvay during the 1860s. [1]
Sodium carbonate (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na 2 CO 3 and its various hydrates.All forms are white, odourless, water-soluble salts that yield alkaline solutions in water.
Soda lime canister used in anaesthetic machines to act as a carbon dioxide scrubber. Soda lime, a mixture of sodium hydroxide (NaOH) and calcium oxide (CaO), is used in granular form within recirculating breathing environments like general anesthesia and its breathing circuit, submarines, rebreathers, and hyperbaric chambers and underwater habitats.
From this table we see that the number of hydrogen and chlorine atoms on the product's side are twice the number of atoms on the reactant's side. Therefore, we add the coefficient "2" in front of the HCl on the products side, to get the equation to look like this: