enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluorine compounds - Wikipedia

    en.wikipedia.org/wiki/Fluorine_compounds

    The fluorine–fluorine bond of the difluorine molecule is relatively weak when compared to the bonds of heavier dihalogen molecules. The bond energy is significantly weaker than those of Cl 2 or Br 2 molecules and similar to the easily cleaved oxygenoxygen bonds of peroxides or nitrogennitrogen bonds of hydrazines. [8]

  3. Oxygen fluoride - Wikipedia

    en.wikipedia.org/wiki/Oxygen_fluoride

    Oxygen difluoride. A common preparative method involves fluorination of sodium hydroxide: 2 F 2 + 2 NaOH → OF 2 + 2 NaF + H 2 O. OF 2 is a colorless gas at room temperature and a yellow liquid below 128 K. Oxygen difluoride has an irritating odor and is poisonous. [3] It reacts quantitatively with aqueous haloacids to give free halogens:

  4. Dioxygen difluoride - Wikipedia

    en.wikipedia.org/wiki/Dioxygen_difluoride

    Repulsion involving the fluorine lone pairs is also responsible for the long and weak covalent bonding in the fluorine molecule. Computational chemistry indicates that dioxygen difluoride has an exceedingly high barrier to rotation of 81.17 kJ/mol around the O−O bond (in hydrogen peroxide the barrier is 29.45 kJ/mol); this is close to the O ...

  5. Diatomic molecule - Wikipedia

    en.wikipedia.org/wiki/Diatomic_molecule

    A space-filling model of the diatomic molecule dinitrogen, N 2. Diatomic molecules (from Greek di- 'two') are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen (H 2) or oxygen (O 2), then it is said to be homonuclear.

  6. Oxygen compounds - Wikipedia

    en.wikipedia.org/wiki/Oxygen_compounds

    Each oxygen atom in its peroxide ion may have a full octet of 4 pairs of electrons. [6] Superoxides are a class of compounds that are very similar to peroxides, but with just one unpaired electron for each pair of oxygen atoms (O − 2). [6] These compounds form by oxidation of alkali metals with larger ionic radii (K, Rb, Cs).

  7. Oxygen difluoride - Wikipedia

    en.wikipedia.org/wiki/Oxygen_difluoride

    Oxygen difluoride is a chemical compound with the formula OF 2. As predicted by VSEPR theory, the molecule adopts a bent molecular geometry. [citation needed] It is a strong oxidizer and has attracted attention in rocketry for this reason. [5] With a boiling point of −144.75 °C, OF 2 is the most volatile (isolable) triatomic compound. [6]

  8. Fluorine - Wikipedia

    en.wikipedia.org/wiki/Fluorine

    Covalent bonding first comes to prominence in the tetrafluorides: those of zirconium, hafnium [108] [109] and several actinides [110] are ionic with high melting points, [111] [note 11] while those of titanium, [114] vanadium, [115] and niobium are polymeric, [116] melting or decomposing at no more than 350 °C (662 °F). [117]

  9. Nitrogen compounds - Wikipedia

    en.wikipedia.org/wiki/Nitrogen_compounds

    It thus undergoes self-dissociation, similar to water, to produce ammonium and amide. Ammonia burns in air or oxygen, though not readily, to produce nitrogen gas; it burns in fluorine with a greenish-yellow flame to give nitrogen trifluoride. Reactions with the other nonmetals are very complex and tend to lead to a mixture of products.