Search results
Results from the WOW.Com Content Network
Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse waves with centre frequencies ranging from 0.1-15 MHz and occasionally up to 50 MHz, are transmitted into materials to detect ...
An ultrasonic thickness gauge is a measuring instrument for the non-destructive investigation of a material's thickness using ultrasonic waves. The usage of an ultrasonic thickness gauge for non-destructive testing to check material properties such as thickness measurement, is regular in all areas of industrial measurements.
Ultrasound can also provide additional information such as the depth of flaws in a welded joint. Ultrasonic inspection has progressed from manual methods to computerized systems that automate much of the process. An ultrasonic test of a joint can identify the existence of flaws, measure their size, and identify their location.
Phased array ultrasonics (PA) is an advanced method of ultrasonic testing that has applications in medical imaging and industrial nondestructive testing. Common applications are to noninvasively examine the heart or to find flaws in manufactured materials such as welds.
Guided wave testing (GWT) is a non-destructive evaluation method. The method employs acoustic waves that propagate along an elongated structure while guided by its boundaries. The method employs acoustic waves that propagate along an elongated structure while guided by its boundaries.
Because ultrasonic sensors use sound rather than light for detection, they work in applications where photoelectric sensors may not. Ultrasonics is a great solution for clear object detection and for liquid level measurement, applications that photoelectrics struggle with because of target translucence.
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
In addition to the above-mentioned applications, which fall under the category of nondestructive testing, EMATs have been used in research for ultrasonic communication, where they generate and receive an acoustic signal in a metallic structure. [15] Ultrasonic communication is particularly useful in areas where radio frequency can not be used.