Search results
Results from the WOW.Com Content Network
The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...
Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt ...
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
where m is the (equivalent) mass, x stands for the amplitude of vibration, t for time, c for the viscous damping coefficient, and k for the stiffness of the system or structure.
It should also be known that the frequency and the period of vibration do not change when the damping is constant, as in the case of Coulomb damping. The period τ is the amount of time between the repetition of phases during vibration. As time progresses, the object sliding slows and the distance it travels during these oscillations becomes ...
Different damping ratios produce different SRSs for the same shock waveform. Zero damping will produce a maximum response. Very high damping produces a very boring SRS: A horizontal line. The level of damping is demonstrated by the "quality factor", Q which can also be thought of transmissibility in sinusoidal vibration case.
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration.It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable.
In order to reduce the maximum force on the motor mounts as the motor operates over a range of speeds, a smaller mass, m 2, is connected to m 1 by a spring and a damper, k 2 and c 2. F 1 is the effective force on the motor due to its operation. Response of the system excited by one unit of force, with (red) and without (blue) the 10% tuned mass ...