Search results
Results from the WOW.Com Content Network
It encodes the common concept of relation: an element is related to an element , if and only if the pair (,) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers, in which each prime is related to each integer that is ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.
In the case where R is a binary relation, those statements are also denoted using infix notation by x 1 Rx 2. The following considerations apply: The set X i is called the i th domain of R. [1] In the case where R is a binary relation, X 1 is also called simply the domain or set of departure of R, and X 2 is also called the codomain or set of ...
In computer science, a set is an abstract data type that can store unique values, without any particular order. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set.
In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x ...
Typical examples of binary operations are the addition (+) and multiplication of numbers and matrices as well as composition of functions on a single set. For instance, For instance, On the set of real numbers R {\displaystyle \mathbb {R} } , f ( a , b ) = a + b {\displaystyle f(a,b)=a+b} is a binary operation since the sum of two real numbers ...