enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  3. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...

  4. Studentized range distribution - Wikipedia

    en.wikipedia.org/wiki/Studentized_range_distribution

    In order to create the studentized range distribution for normal data, we first switch from the generic f X and F X to the distribution functions φ and Φ for the standard normal distribution, and change the variable r to s·q, where q is a fixed factor that re-scales r by scaling factor s:

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  6. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  7. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  8. Johnson's SU-distribution - Wikipedia

    en.wikipedia.org/wiki/Johnson's_SU-distribution

    QPDs can provide greater shape flexibility than the Johnson system. Instead of fitting moments, QPDs are typically fit to empirical CDF data with linear least squares. Johnson's -distribution is also used in the modelling of the invariant mass of some heavy mesons in the field of B-physics. [4]

  9. Tukey lambda distribution - Wikipedia

    en.wikipedia.org/wiki/Tukey_lambda_distribution

    The Tukey lambda distribution has a simple, closed form for the CDF and / or PDF only for a few exceptional values of the shape parameter, for example: λ ∈ {2, 1, ⁠ 1 / 2 ⁠, 0 } (see uniform distribution [ cases λ = 1 and λ = 2 ] and the logistic distribution [ case λ = 0 ].