enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    Approximating the area under the curve y = x 2 over [0, 2] using the right Riemann sum. Notice that because the function is monotonically increasing, the right Riemann sum will always overestimate the area contributed by each term in the sum (and do so maximally).

  3. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  4. Riesz function - Wikipedia

    en.wikipedia.org/wiki/Riesz_function

    where c is between minus one and minus one-half. If the Riemann hypothesis is true, we can move the line of integration to any value less than minus one-fourth, and hence we get the equivalence between the fourth-root rate of growth for the Riesz function and the Riemann hypothesis.

  5. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  6. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    assuming that both terms on the right-hand side exist and are finite. Abel's summation formula can be generalized to the case where ϕ {\displaystyle \phi } is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral :

  7. Divisor summatory function - Wikipedia

    en.wikipedia.org/wiki/Divisor_summatory_function

    The vertical scale is not constant left to right; click on image for a detailed description. In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function.

  8. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral appears in the original formulation of F. Riesz's theorem which represents the dual space of the Banach space C[a,b] of continuous functions in an interval [a,b] as Riemann–Stieltjes integrals against functions of bounded variation. Later, that theorem was reformulated in terms of measures.

  9. Riemann–Siegel theta function - Wikipedia

    en.wikipedia.org/wiki/Riemann–Siegel_theta...

    In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ⁡ ((+)) ⁡for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.