Search results
Results from the WOW.Com Content Network
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The other and most popular formula is the Dearden and O'Neill formula, which was adopted by IIW in 1967. [4] This formula has been found suitable for predicting hardenability in a large range of commonly used plain carbon and carbon-manganese steels, but not to microalloyed high-strength low-alloy steels or low-alloy Cr-Mo steels.
CMVs are restricted by gross weight (total weight of vehicle and cargo), and by axle weight (i.e., the weight carried by each tire). The federal weight limits for CMVs are 80,000 pounds (36,000 kg) for gross weight (unless the bridge formula dictates a lower limit), 34,000 pounds (15,000 kg) for a tandem axle, and 20,000 pounds (9,100 kg) for a ...
It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required. The dimensional analysis yields units of distance squared per time squared.
Knowing the volume of the unit cell of a crystalline material and its formula weight (in daltons), the density can be calculated. One dalton per cubic ångström is equal to a density of 1.660 539 066 60 g/cm 3 .
Measuring the compressive strength of a steel drum. In mechanics, compressive strength (or compression strength) is the capacity of a material or structure to withstand loads tending to reduce size (compression). It is opposed to tensile strength which withstands loads tending to elongate, resisting tension (being pulled apart).
The noun steel originates from the Proto-Germanic adjective *stahliją or *stakhlijan 'made of steel', which is related to *stahlaz or *stahliją 'standing firm'. [4] The carbon content of steel is between 0.02% and 2.14% by weight for plain carbon steel (iron-carbon alloys). Too little carbon content leaves (pure) iron quite soft, ductile, and ...