Search results
Results from the WOW.Com Content Network
The simplicity of the counting sort algorithm and its use of the easily parallelizable prefix sum primitive also make it usable in more fine-grained parallel algorithms. [7] As described, counting sort is not an in-place algorithm; even disregarding the count array, it needs separate input and output arrays. It is possible to modify the ...
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
/* This class has two type variables, T and V. T must be a subtype of ArrayList and implement Formattable interface */ public class Mapper < T extends ArrayList & Formattable, V > {public void add (T array, V item) {// array has add method because it is an ArrayList subclass array. add (item);}}
Selection sort: Find the smallest (or biggest) element in the array, and put it in the proper place. Swap it with the value in the first position. Repeat until array is sorted. Quick sort: Partition the array into two segments. In the first segment, all elements are less than or equal to the pivot value.
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A,I,V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
The set of all possible values of a sum type is the set-theoretic sum, i.e., the disjoint union, of the sets of all possible values of its variants. Enumerated types are a special case of sum types in which the constructors take no arguments, as exactly one value is defined for each constructor.
In mathematics, a character sum is a sum () of values of a Dirichlet character χ modulo N, taken over a given range of values of n.Such sums are basic in a number of questions, for example in the distribution of quadratic residues, and in particular in the classical question of finding an upper bound for the least quadratic non-residue modulo N.