Search results
Results from the WOW.Com Content Network
A probability distribution is not uniquely determined by the moments E[X n] = e nμ + 1 / 2 n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]
The numerical value of the mode is the same as that of the mean and median in a normal distribution, and it may be very different in highly skewed distributions. The mode is not necessarily unique in a given discrete distribution since the probability mass function may take the same maximum value at several points x 1 , x 2 , etc.
The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1). The Dirac delta function , although not strictly a probability distribution, is a limiting form of many continuous probability functions.
The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.
While for a beta distribution with equal shape parameters α = β, it follows that skewness = 0 and mode = mean = median = 1/2, the geometric mean is less than 1/2: 0 < G X < 1/2. The reason for this is that the logarithmic transformation strongly weights the values of X close to zero, as ln( X ) strongly tends towards negative infinity as X ...
where the median is ν, the mean is μ and ω is the root mean square deviation from the mode. It can be shown for a unimodal distribution that the median ν and the mean μ lie within (3/5) 1/2 ≈ 0.7746 standard deviations of each other. [ 11 ]
If the distribution is both symmetric and unimodal, then the mean = median = mode. This is the case of a coin toss or the series 1,2,3,4,... This is the case of a coin toss or the series 1,2,3,4,... Note, however, that the converse is not true in general, i.e. zero skewness (defined below) does not imply that the mean is equal to the median.
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).