enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    This is a consequence of the fact that, because gcd(R, N) = 1, multiplication by R is an isomorphism on the additive group Z/NZ. For example, (7 + 15) mod 17 = 5, which in Montgomery form becomes (3 + 4) mod 17 = 7. Multiplication in Montgomery form, however, is seemingly more complicated.

  3. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    The Barrett multiplication previously described requires a constant operand b to pre-compute [] ahead of time. Otherwise, the operation is not efficient. Otherwise, the operation is not efficient. It is common to use Montgomery multiplication when both operands are non-constant as it has better performance.

  4. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...

  5. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  6. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).

  7. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  8. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The optimal number of field operations needed to multiply two square n × n matrices up to constant factors is still unknown. This is a major open question in theoretical computer science . As of January 2024 [update] , the best bound on the asymptotic complexity of a matrix multiplication algorithm is O( n 2.371552 ) .

  9. Strength reduction - Wikipedia

    en.wikipedia.org/wiki/Strength_reduction

    replacing integer multiplication by a constant with a combination of shifts, adds or subtracts; replacing integer division by a constant with a multiplication, taking advantage of the limited range of machine integers. [3] This method also works if divisor is a non-integer sufficiently greater than 1, e.g. √2 or π. [4]