Search results
Results from the WOW.Com Content Network
The long orbital period of Neptune means that the seasons last for forty Earth years. [109] Its sidereal rotation period (day) is roughly 16.11 hours. [ 12 ] Because its axial tilt is comparable to Earth's, the variation in the length of its day over the course of its long year is not any more extreme.
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .
Given in orbits per day Orbital period: period orbit_period minutes Semi-major axis: semimajor axis orbit_semimajor kilometres Citation: ref (none) n/a (string) Provides a reference to the page the orbital elements were obtained from. Must only include a reference, wrapped in <ref> tags Satellite Catalog Number: satcat SATCAT n/a (string)
2002 XV 93 is locked in 2:3 resonance with Neptune, meaning that for every two revolutions it makes around the Sun, Neptune makes exactly three. [ 2 ] The rotation period of this object is currently unknown.
This template is part of a group of templates that are used to display information about the orbital characteristics of an extrasolar planetary system. The list should always have {{OrbitboxPlanet begin}} as the first in the list, while the list should have {{Orbitbox end}} as the last in the list. This particular template can be used as follows:
Mercury, the closest planet to the Sun at 0.4 astronomical units (AU), takes 88 days for an orbit, but the smallest known orbits of exoplanets have orbital periods of only a few hours, see Ultra-short period planet. The Kepler-11 system has five of its planets in smaller orbits than Mercury's.
Clete orbits near Neptune's L 4 Lagrangian point about 60° ahead of Neptune and thus has the about same orbital period as Neptune. It orbits the Sun at a distance of 28.5–31.6 AU once every 164 years and 9 months (60,182 days; semi-major axis of 30.06 AU).
Distribution of mass versus orbital period for planets with a measured mass. Black lines represent the Neptunian desert. NGTS-4b is shown as a red cross.. The Neptunian desert or sub-Jovian desert is broadly defined as the region close to a star (period < 2–4 days) where no Neptune-sized (> 0.1 M J) exoplanets are found. [1]