enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantile regression - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression

    Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.

  3. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    For example, the ML estimator from the previous example may be attained as the limit of Bayes estimators with respect to a uniform prior, [,] with increasing support and also with respect to a zero-mean normal prior (,) with increasing variance. So neither the resulting ML estimator is unique minimax nor the least favorable prior is unique.

  4. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    According to David Salsburg, the algorithms used in kernel regression were independently developed and used in fuzzy systems: "Coming up with almost exactly the same computer algorithm, fuzzy systems and kernel density-based regressions appear to have been developed completely independently of one another."

  5. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    Analogously to how the median generalizes to the geometric median (GM) in multivariate data, MAD can be generalized to the median of distances to GM (MADGM) in n dimensions. This is done by replacing the absolute differences in one dimension by Euclidean distances of the data points to the geometric median in n dimensions. [5]

  6. Repeated median regression - Wikipedia

    en.wikipedia.org/wiki/Repeated_median_regression

    In robust statistics, repeated median regression, also known as the repeated median estimator, is a robust linear regression algorithm. The estimator has a breakdown point of 50%. [ 1 ] Although it is equivariant under scaling, or under linear transformations of either its explanatory variable or its response variable, it is not under affine ...

  7. Hodges–Lehmann estimator - Wikipedia

    en.wikipedia.org/wiki/Hodges–Lehmann_estimator

    In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter.For populations that are symmetric about one median, such as the Gaussian or normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median.

  8. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]

  9. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    The two-step estimator discussed above is a limited information maximum likelihood (LIML) estimator. In asymptotic theory and in finite samples as demonstrated by Monte Carlo simulations, the full information (FIML) estimator exhibits better statistical properties. However, the FIML estimator is more computationally difficult to implement. [9]