enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tension (physics) - Wikipedia

    en.wikipedia.org/wiki/Tension_(physics)

    Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.

  3. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).

  4. Mersenne's laws - Wikipedia

    en.wikipedia.org/wiki/Mersenne's_laws

    A string half the length (1/2), four times the tension (4), or one-quarter the mass per length (1/4) is an octave higher (2/1). If the tension on a string is ten lbs., it must be increased to 40 lbs. for a pitch an octave higher. [1] A string, tied at A, is kept in tension by W, a suspended weight, and two bridges, B and the movable bridge C ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, a free body diagram of a block sitting upon an inclined plane can illustrate the combination of gravitational force, "normal" force, friction, and string tension. [note 4] Newton's second law is sometimes presented as a definition of force, i.e., a force is that which exists when an inertial observer sees a body accelerating.

  6. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    An equation for the acceleration can be derived by analyzing forces. Assuming a massless, inextensible string and an ideal massless pulley, the only forces to consider are: tension force (T), and the weight of the two masses (W 1 and W 2). To find an acceleration, consider the forces affecting each individual mass.

  7. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. [4] It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica ("the Principia"), first published on 5 July 1687. The equation for universal gravitation thus takes the form:

  8. Your Call: Should the Patriots have gone for a game-winning 2 ...

    www.aol.com/sports/call-patriots-gone-game...

    Spectacular, right? But now the Patriots and head coach Jerod Mayo faced a choice: kick an extra point and go to overtime, or go for 2 and, hopefully, get out of Nashville with an upset win?

  9. Magnetic tension - Wikipedia

    en.wikipedia.org/wiki/Magnetic_tension

    In physics, magnetic tension is a restoring force with units of force density that acts to straighten bent magnetic field lines. In SI units, the force density f T {\displaystyle \mathbf {f} _{T}} exerted perpendicular to a magnetic field B {\displaystyle \mathbf {B} } can be expressed as