Search results
Results from the WOW.Com Content Network
The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid , which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point.
A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...
Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross. Other triples of curves are said to form the Borromean rings as long as they are topologically equivalent to the curves depicted in this drawing.
A pyramid is a polyhedron that may be formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form an isosceles triangle called a lateral face. [7] The edges connected from the polygonal base's vertices to the apex are called lateral edges. [8]
The Kepler–Poinsot polyhedra may be constructed from the Platonic solids by a process called stellation. The reciprocal process to stellation is called facetting (or faceting). Every stellation of one polyhedron is dual, or reciprocal, to some facetting of the dual polyhedron. The regular star polyhedra can also be obtained by facetting the ...
Class II (b=c): {3,q+} b,b are easier to see from the dual polyhedron {q,3} with q-gonal faces first divided into triangles with a central point, and then all edges are divided into b sub-edges. Class III: {3,q+} b,c have nonzero unequal values for b,c, and exist in chiral pairs.
The 600-cell is the fifth in the sequence of 6 convex regular 4-polytopes (in order of complexity and size at the same radius). [a] It can be deconstructed into twenty-five overlapping instances of its immediate predecessor the 24-cell, [5] as the 24-cell can be deconstructed into three overlapping instances of its predecessor the tesseract (8-cell), and the 8-cell can be deconstructed into ...
Elongated indicates a prism is joined to the base of the solid, or between the bases; gyroelongated indicates an antiprism. Augmented indicates another polyhedron, namely a pyramid or cupola, is joined to one or more faces of the solid in question. Diminished indicates a pyramid or cupola is removed from one or more faces of the solid in question.