enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space ...

  3. 600-cell - Wikipedia

    en.wikipedia.org/wiki/600-cell

    Each polyhedron lies in Euclidean 4-dimensional space as a parallel cross section through the 600-cell (a hyperplane). In the curved 3-dimensional space of the 600-cell's boundary surface envelope, the polyhedron surrounds the vertex V the way it surrounds its own center. But its own center is in the interior of the 600-cell, not on its surface.

  4. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The base regularity of a pyramid's base may be classified based on the type of polygon: one example is the star pyramid in which its base is the regular star polygon. [28] The truncated pyramid is a pyramid cut off by a plane; if the truncation plane is parallel to the base of a pyramid, it is called a frustum.

  5. Borromean rings - Wikipedia

    en.wikipedia.org/wiki/Borromean_rings

    Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross. Other triples of curves are said to form the Borromean rings as long as they are topologically equivalent to the curves depicted in this drawing.

  6. Parallelohedron - Wikipedia

    en.wikipedia.org/wiki/Parallelohedron

    Every parallelohedron is a zonohedron, a centrally symmetric polyhedron with centrally symmetric faces. Like any zonohedron, it can be constructed as the Minkowski sum of line segments, one segment for each parallel class of edges of the polyhedron. For parallelohedra, there are between three and six of these parallel classes.

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    In a dual pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa. The regular polyhedra show this duality as follows: The tetrahedron is self-dual, i.e. it pairs with itself. The cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other.

  8. Johnson solid - Wikipedia

    en.wikipedia.org/wiki/Johnson_solid

    Elongated indicates a prism is joined to the base of the solid, or between the bases; gyroelongated indicates an antiprism. Augmented indicates another polyhedron, namely a pyramid or cupola, is joined to one or more faces of the solid in question. Diminished indicates a pyramid or cupola is removed from one or more faces of the solid in question.

  9. 24-cell - Wikipedia

    en.wikipedia.org/wiki/24-cell

    Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.