enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  3. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  4. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    This number can be seen as equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X) n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution X k, and the coefficient of ...

  5. Polynomial expansion - Wikipedia

    en.wikipedia.org/wiki/Polynomial_expansion

    In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...

  6. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...

  8. How to calculate the present and future value of annuities - AOL

    www.aol.com/finance/calculate-present-future...

    Therefore, the future value of your annuity due with $1,000 annual payments at a 5 percent interest rate for five years would be about $5,801.91.

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The following methods apply to any expression that is a sum, or that may be transformed into a sum. Therefore, they are most often applied to polynomials , though they also may be applied when the terms of the sum are not monomials , that is, the terms of the sum are a product of variables and constants.

  1. Related searches find the following sum calculator with two factors of 6 and 4 terms of a number

    how to sum 2 numberswhat is a sum in math
    sum of sums formulasum of all functions
    how to calculate sum