Search results
Results from the WOW.Com Content Network
X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.
Early X-ray microscopes by Paul Kirkpatrick and Albert Baez used grazing-incidence reflective X-ray optics to focus the X-rays, which grazed X-rays off parabolic curved mirrors at a very high angle of incidence. An alternative method of focusing X-rays is to use a tiny Fresnel zone plate of concentric gold or nickel rings on a silicon dioxide ...
X-ray optics is the branch of optics dealing with X-rays, rather than visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction , X-ray crystallography , X-ray fluorescence , small-angle X-ray scattering , X-ray microscopy , X-ray phase-contrast imaging , and X-ray ...
The following other wikis use this file: Usage on bn.wikipedia.org আলোকরশ্মি; Usage on bn.wikibooks.org উইকিশৈশব:ইংরেজি বর্ণমালায় বিজ্ঞান/R
The plane of incidence is defined by the incoming radiation's propagation vector and the normal vector of the surface. In describing reflection and refraction in optics, the plane of incidence (also called the incidence plane or the meridional plane [citation needed]) is the plane which contains the surface normal and the propagation vector of the incoming radiation. [1]
X-ray mirrors can be built, but only if the angle from the plane of reflection is very low (typically 10 arc-minutes to 2 degrees). [2] These are called glancing (or grazing ) incidence mirrors . In 1952, Hans Wolter outlined three ways a telescope could be built using only this kind of mirror.
The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as optical, acoustic, microwave, and X-ray. In the figure below, the line representing a ray makes an ...
It is named after Paul Kirkpatrick and Albert Baez, the inventors of the X-ray microscope. [1] Although X-rays can be focused by compound refractive lenses, these also reduce the intensity of the beam and are therefore undesirable. KB mirrors, on the other hand, can focus beams to small spot sizes with minimal loss of intensity.