Search results
Results from the WOW.Com Content Network
Core math functions include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier transforms, and vector math. Intel IPP is a multi-threaded software library of functions for multimedia and data processing applications. OpenBLAS is an open source implementation of the BLAS API with many hand-crafted optimizations for specific processor types ...
The multitaper method overcomes some of the limitations of non-parametric Fourier analysis. When applying the Fourier transform to extract spectral information from a signal, we assume that each Fourier coefficient is a reliable representation of the amplitude and relative phase of the corresponding component frequency. This assumption, however ...
In other words, where f is a (normalized) Gaussian function with variance σ 2 /2 π, centered at zero, and its Fourier transform is a Gaussian function with variance σ −2 /2 π. Gaussian functions are examples of Schwartz functions (see the discussion on tempered distributions below).
Xcas/Giac is an open-source project developed at the Joseph Fourier University of Grenoble since 2000. Written in C++, maintained by Bernard Parisse's et al. and available for Windows, Mac, Linux and many others platforms. It has a compatibility mode with Maple, Derive and MuPAD software and TI-89, TI-92 and Voyage 200 calculators.
The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. [1] The window function means that the signal near the time being analyzed will have higher weight.
Fourier transforms of two Kaiser windows. where: I 0 is the zeroth-order modified Bessel function of the first kind, L is the window duration, and; α is a non-negative real number that determines the shape of the window. In the frequency domain, it determines the trade-off between main-lobe width and side lobe level, which is a central ...
The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum.Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles of the non-zero values of S(f).
Compute the Fourier transform (b j,k) of g.Compute the Fourier transform (a j,k) of f via the formula ().Compute f by taking an inverse Fourier transform of (a j,k).; Since we're only interested in a finite window of frequencies (of size n, say) this can be done using a fast Fourier transform algorithm.