enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.

  3. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  4. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. [4] A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive.

  5. Exponential-logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential-logarithmic...

    In probability theory and statistics, the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate, defined on the interval [0, ∞). This distribution is parameterized by two parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} .

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law =, which can be seen to hold for all integers k, together with Euler's formula, implies several trigonometric identities, as well as de Moivre's formula.

  7. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series

  8. Stretched exponential function - Wikipedia

    en.wikipedia.org/wiki/Stretched_exponential_function

    The compressed exponential function (with β > 1) has less practical importance, with the notable exceptions of β = 2, which gives the normal distribution, and of compressed exponential relaxation in the dynamics of amorphous solids. [1] In mathematics, the stretched exponential is also known as the complementary cumulative Weibull distribution.

  9. Generating function transformation - Wikipedia

    en.wikipedia.org/wiki/Generating_function...

    The first integral formula corresponds to the Laplace transform (or sometimes the formal Laplace–Borel transformation) of generating functions, denoted by [] (), defined in. [7] Other integral representations for the gamma function in the second of the previous formulas can of course also be used to construct similar integral transformations ...