Search results
Results from the WOW.Com Content Network
Individuals with complete androgen insensitivity syndrome are almost always brought up as females, and the differentiation of gender identity/role is feminine. [8] This example is important in demonstrating that chromosomes and gonads alone do not dictate gender identity and role.
The human Y chromosome showing the SRY gene which codes for a protein regulating sexual differentiation. Sexual differentiation in humans is the process of development of sex differences in humans. It is defined as the development of phenotypic structures consequent to the action of hormones produced following gonadal determination. [1]
Pages in category "Proteins by function" The following 9 pages are in this category, out of 9 total. This list may not reflect recent changes. A. Antifreeze protein;
The human genome, categorized by function of each gene product, given both as number of genes and as percentage of all genes. [7] Proteins may also be classified based on their cellular function. A widely used classification is PANTHER (protein analysis through evolutionary relationships) classification system. [7]
Sex differences in human physiology are distinctions of physiological characteristics associated with either male or female humans. These differences are caused by the effects of the different sex chromosome complement in males and females, and differential exposure to gonadal sex hormones during development.
In humans, the SRY gene is located on short (p) arm of the Y chromosome at position 11.2. Sex-determining region Y protein (SRY), or testis-determining factor (TDF), is a DNA-binding protein (also known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in therian mammals (placentals and marsupials). [5]
The neuroscience of sex differences is the study of characteristics that separate brains of different sexes. Psychological sex differences are thought by some to reflect the interaction of genes, hormones, and social learning on brain development throughout the lifespan.
With immunoassay-based techniques, testosterone levels in premenopausal women have been found to be about 40 ng/dL (1.4 nmol/L) and DHT levels about 10 ng/dL (0.34 nmol/L). [5] [74] With radioimmunoassays, the ranges for testosterone and DHT levels in women have been found to be 20 to 70 ng/dL and 5 to 30 ng/dL, respectively. [74]