Search results
Results from the WOW.Com Content Network
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The Standard Model of particle physics is the quantum field theory that describes three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifies all known elementary particles.
In condensed matter physics and quantum information theory, the quantum double model, proposed by Alexei Kitaev, is a lattice model that exhibits topological excitations. [1] This model can be regarded as a lattice gauge theory, and it has applications in many fields, like topological quantum computation , topological order , topological ...
Quantum electrodynamics describes a quantum theory of electrons, positrons, and the electromagnetic field, and served as a model for subsequent quantum field theories. [41] [42] [64] Feynman diagram of gluon radiation in quantum chromodynamics. The theory of quantum chromodynamics was formulated beginning in the early 1960s.
The category of quantum models encompasses a variety of exactly solvable problems in quantum mechanics. Each exactly solvable problem is of interest for several reasons. It provides a test case for methods applicable to other problems. It can be used as a starting point for perturbation theory.
Linus Pauling outlines the nature of the chemical bond: uses Heitler's quantum mechanical covalent bond model to outline the quantum mechanical basis for all types of molecular structure and bonding and suggests that different types of bonds in molecules can become equalized by rapid shifting of electrons, a process called "resonance" (1931 ...
The quantum rotor model is a mathematical model for a quantum system. It can be visualized as an array of rotating electrons which behave as rigid rotors that interact through short-range dipole-dipole magnetic forces originating from their magnetic dipole moments (neglecting Coulomb forces).
The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically.