Search results
Results from the WOW.Com Content Network
Pepsin / ˈ p ɛ p s ɪ n / is an endopeptidase that breaks down proteins into smaller peptides and amino acids.It is one of the main digestive enzymes in the digestive systems of humans and many other animals, where it helps digest the proteins in food.
Pepsin breaks down the protein in the food into smaller particles, such as peptide fragments and amino acids. Protein digestion, therefore, primarily starts in the stomach, unlike carbohydrate and lipids, which start their digestion in the mouth (however, trace amounts of the enzyme kallikrein , which catabolises certain protein, is found in ...
The liquid quality of the saliva will help in the softening of the food and its enzyme content will start to break down the food whilst it is still in the mouth. The first part of the food to be broken down is the starch of carbohydrates (by the enzyme amylase in the saliva).
In the first two chambers, the rumen and the reticulum, the food is mixed with saliva and separates into layers of solid and liquid material. Solids clump together to form the cud (or bolus). The cud is then regurgitated, chewed slowly to completely mix it with saliva and to break down the particle size.
Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen: [1] 2 H 2 O → 2 H 2 + O 2 Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy .
The gastric glands open into gastric pits in the mucosa. The gastric mucosa is covered in surface mucous cells that produce the mucus necessary to protect the stomach's epithelial lining from gastric acid secreted by parietal cells in the glands, and from pepsin, a secreted digestive enzyme. Surface mucous cells follow the indentations and ...
Proteolysis in organisms serves many purposes; for example, digestive enzymes break down proteins in food to provide amino acids for the organism, while proteolytic processing of a polypeptide chain after its synthesis may be necessary for the production of an active protein.
The arrangement of these proteins on the apical and basolateral sides of the epithelium determines the net movement of ions and water in the tract. H + and Cl − are secreted by the parietal cells into the lumen of the stomach creating acidic conditions with a low pH of 1. H + is pumped into the stomach by exchanging it with K +.