enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    The second part expresses the kinetic energy of a system of particles in terms of the velocities of the individual particles and the centre of mass.. Specifically, it states that the kinetic energy of a system of particles is the sum of the kinetic energy associated to the movement of the center of mass and the kinetic energy associated to the movement of the particles relative to the center ...

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Kinetic energy is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy.

  4. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  5. Muzzle energy - Wikipedia

    en.wikipedia.org/wiki/Muzzle_energy

    The general formula for the kinetic energy is =, where v is the velocity of the bullet and m is the mass of the bullet. Although both mass and velocity contribute to the muzzle energy, the muzzle energy is proportional to the mass while proportional to the square of the velocity. The velocity of the bullet is a more important determinant of ...

  6. Equipartition theorem - Wikipedia

    en.wikipedia.org/wiki/Equipartition_theorem

    The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by = | | = (+ +), where v x, v y and v z are the Cartesian components of the velocity v.Here, H is short for Hamiltonian, and used henceforth as a symbol for energy because the Hamiltonian formalism plays a central role in the most general form of the equipartition theorem.

  7. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    In a set of curvilinear coordinates ξ = (ξ 1, ξ 2, ξ 3), the law in tensor index notation is the "Lagrangian form" [18] [19] = (+) = (˙), ˙, where F a is the a-th contravariant component of the resultant force acting on the particle, Γ a bc are the Christoffel symbols of the second kind, = is the kinetic energy of the particle, and g bc ...

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.

  9. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    This equation explained the new, non-classical fact that an electron confined to be close to a nucleus would necessarily have a large kinetic energy so that the minimum total energy (kinetic plus potential) actually occurs at some positive separation rather than at zero separation; in other words, zero-point energy is essential for atomic ...