enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor set - Wikipedia

    en.wikipedia.org/wiki/Cantor_set

    The Cantor set is a meagre set (or a set of first category) as a subset of [0,1] (although not as a subset of itself, since it is a Baire space). The Cantor set thus demonstrates that notions of "size" in terms of cardinality, measure, and (Baire) category need not coincide.

  3. Georg Cantor - Wikipedia

    en.wikipedia.org/wiki/Georg_Cantor

    Georg Ferdinand Ludwig Philipp Cantor (/ ˈ k æ n t ɔːr / KAN-tor; German: [ˈɡeːɔʁk ˈfɛʁdinant ˈluːtvɪç ˈfiːlɪp ˈkantoːɐ̯]; 3 March [O.S. 19 February] 1845 – 6 January 1918 [1]) was a mathematician who played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics.

  4. Cantor algebra - Wikipedia

    en.wikipedia.org/wiki/Cantor_algebra

    In mathematics, a Cantor algebra, named after Georg Cantor, is one of two closely related Boolean algebras, one countable and one complete. The countable Cantor algebra is the Boolean algebra of all clopen subsets of the Cantor set. This is the free Boolean algebra on a countable number of generators. Up to isomorphism, this is the only ...

  5. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Cantor's theorem and its proof are closely related to two paradoxes of set theory. Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important ...

  6. Controversy over Cantor's theory - Wikipedia

    en.wikipedia.org/wiki/Controversy_over_Cantor's...

    Cantor's set theory was controversial at the start, but later became largely accepted. Most modern mathematics textbooks implicitly use Cantor's views on mathematical infinity . For example, a line is generally presented as the infinite set of its points, and it is commonly taught that there are more real numbers than rational numbers (see ...

  7. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Georg Cantor. Mathematical topics typically emerge and evolve through interactions among many researchers. Set theory, however, was founded by a single paper in 1874 by Georg Cantor: "On a Property of the Collection of All Real Algebraic Numbers".

  8. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  9. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    Cantor's uncountability theorem was left out of the article he submitted. He added it during proofreading. [43] The article's title refers to the set of real algebraic numbers. The main topic in Cantor's correspondence was the set of real numbers. [44] The proof of Cantor's second theorem came from Dedekind.