Search results
Results from the WOW.Com Content Network
In Euclidean geometry, the right triangle altitude theorem or geometric mean theorem is a relation between the altitude on the hypotenuse in a right triangle and the two line segments it creates on the hypotenuse. It states that the geometric mean of those two segments equals the altitude.
The inequalities then follow easily by the Pythagorean theorem. Comparison of harmonic, geometric, arithmetic, quadratic and other mean values of two positive real numbers x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}}
Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [note 1
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
The mean is the geometric when they are such that as the first is to the second, so the second is to the third. Of these terms the greater and the lesser have the interval between them equal. Subcontrary, which we call harmonic, is the mean when they are such that, by whatever part of itself the first term exceeds the second, by that part of ...
= (Geometric mean theorem; see Special Cases, inverse Pythagorean theorem) In a right triangle, the altitude from each acute angle coincides with a leg and intersects the opposite side at (has its foot at) the right-angled vertex, which is the orthocenter.
Get support for AOL Mail, including login help, Desktop Gold, and subscription questions with customer care contact options.
Proofs from THE BOOK contains 32 sections (45 in the sixth edition), each devoted to one theorem but often containing multiple proofs and related results. It spans a broad range of mathematical fields: number theory, geometry, analysis, combinatorics and graph theory.