Search results
Results from the WOW.Com Content Network
In traditional typefounding, a piece of type bearing a complete fraction (e.g. 1 / 2 ) was known as a case fraction, while those representing only parts of fractions were called piece fractions. The denominators of English fractions are generally expressed as ordinal numbers, in the plural if the numerator is not 1.
However, if the fraction 1/1 is replaced by the fraction 2/2, which is an equivalent fraction denoting the same rational number 1, the mediant of the fractions 2/2 and 1/2 is 3/4. For a stronger connection to rational numbers the fractions may be required to be reduced to lowest terms, thereby selecting unique representatives from the ...
When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive. Non-positive numbers: Real numbers that are less than or equal to zero. Thus a non-positive number is either zero or negative.
2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.
Addition is a mathematical operation that combines two or more numbers (called addends or summands) to produce a combined number (called the sum). The addition of two numbers is expressed with the plus sign (+). [6] It is performed according to these rules: The order in which the addends are added does not affect the sum.
This system results in "two thirds" for 2 ⁄ 3 and "fifteen thirty-seconds" for 15 ⁄ 32. This system is normally used for denominators less than 100 and for many powers of 10 . Examples include "six ten-thousandths" for 6 ⁄ 10,000 and "three hundredths" for 0.03.
Decimal fractions like 0.3 and 25.12 are a special type of rational numbers since their denominator is a power of 10. For instance, 0.3 is equal to , and 25.12 is equal to . [20] Every rational number corresponds to a finite or a repeating decimal. [21] [c]
[1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.