enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  3. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is:

  4. Vortex lattice method - Wikipedia

    en.wikipedia.org/wiki/Vortex_lattice_method

    All the lifting surfaces of an aircraft are divided into some number of quadrilateral panels, and a horseshoe vortex and a collocation point (or control point) are placed on each panel. The transverse segment of the vortex is at the 1/4 chord position of the panel, while the collocation point is at the 3/4 chord position.

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...

  6. Proper generalized decomposition - Wikipedia

    en.wikipedia.org/wiki/Proper_generalized...

    Collocation Method: In collocation methods, the differential equation is satisfied at a finite number of points in the domain, known as collocation points. This approach can be simpler and more direct than the integral-based methods like Galerkin's, but it may also be less stable for some problems.

  7. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    The explicit midpoint method is sometimes also known as the modified Euler method, [1] the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a symplectic integrator. Note that the modified Euler method can refer to Heun's method, [2] for further clarity see List of Runge–Kutta methods.

  8. Regularized meshless method - Wikipedia

    en.wikipedia.org/wiki/Regularized_meshless_method

    Like the method of fundamental solutions (MFS), the numerical solution is approximated by a linear combination of double layer kernel functions with respect to different source points. Unlike the MFS, the collocation and source points of the RMM, however, are coincident and placed on the physical boundary without the need of a fictitious ...

  9. Boundary knot method - Wikipedia

    en.wikipedia.org/wiki/Boundary_knot_method

    In numerical mathematics, the boundary knot method (BKM) is proposed as an alternative boundary-type meshfree distance function collocation scheme.. Recent decades have witnessed a research boom on the meshfree numerical PDE techniques since the construction of a mesh in the standard finite element method and boundary element method is not trivial especially for moving boundary, and higher ...