enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz. [3] In symbols, the partial fraction decomposition of a rational fraction of the form where f and g are polynomials, is the expression of the rational fraction as. {\displaystyle {\frac {f (x)} {g (x)}}=p (x)+\sum _ {j} {\frac {f_ {j} (x)} {g_ {j ...

  3. Egyptian fraction - Wikipedia

    en.wikipedia.org/wiki/Egyptian_fraction

    The Rhind Mathematical Papyrus. An Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for ...

  4. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    If x is rational, it will have two continued fraction representations that are finite, x 1 and x 2, and similarly a rational y will have two representations, y 1 and y 2. The coefficients beyond the last in any of these representations should be interpreted as +∞; and the best rational will be one of z(x 1, y 1), z(x 1, y 2), z(x 2, y 1), or ...

  5. Greedy algorithm for Egyptian fractions - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm_for...

    2 + 8x 2 − 1 = 0. Since P 2 (x) < 0 for x = ⁠ 1 / 9 ⁠, and P 2 (x) > 0 for all x > ⁠ 1 / 8 ⁠, the next term in the greedy expansion is ⁠ 1 / 9 ⁠. If x 3 is the remaining fraction after this step of the greedy expansion, it satisfies the equation P 2 (x 3 + ⁠ 1 / 9 ⁠) = 0, which can again be expanded as a polynomial equation ...

  6. Egyptian algebra - Wikipedia

    en.wikipedia.org/wiki/Egyptian_algebra

    But the last copy of 1/64 was written as 5 ro, thereby writing 1 = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + (5 ro). These fractions were further used to write fractions in terms of 1 / 2 k {\displaystyle 1/2^{k}} terms plus a remainder specified in terms of ro as shown in for instance the Akhmim wooden tablets .

  7. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 85 ⁠.

  8. Continued fraction (non-simple) - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction_(non...

    It is sometimes necessary to separate a continued fraction into its even and odd parts. For example, if the continued fraction diverges by oscillation between two distinct limit points p and q, then the sequence {x 0, x 2, x 4, ...} must converge to one of these, and {x 1, x 3, x 5, ...} must converge to the other.

  9. Algebraic fraction - Wikipedia

    en.wikipedia.org/wiki/Algebraic_fraction

    Algebraic fraction. In algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are and . Algebraic fractions are subject to the same laws as arithmetic fractions. A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials.