enow.com Web Search

  1. Ad

    related to: subtraction under modulo 3
  2. education.com has been visited by 100K+ users in the past month

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  3. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In mathematics, the additive inverse of an element x, denoted -x[1], is the element that when added to x, yields the additive identity, 0 [2]. In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element. In elementary mathematics, the additive inverse is often referred to as the opposite number [3][4].

  4. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    That is, one can perform operations (addition, subtraction, multiplication) using the usual operation on integers, followed by reduction modulo p. For instance, in GF(5), 4 + 3 = 7 is reduced to 2 modulo 5. Division is multiplication by the inverse modulo p, which may be computed using the extended Euclidean algorithm.

  5. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition ...

  6. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  7. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    Mathematics of cyclic redundancy checks. The cyclic redundancy check (CRC) is based on division in the ring of polynomials over the finite field GF (2) (the integers modulo 2), that is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around. Any string of bits can be interpreted as the ...

  8. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  9. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  1. Ad

    related to: subtraction under modulo 3