Search results
Results from the WOW.Com Content Network
Telomeric repeat–containing RNA (TERRA) is a long non-coding RNA transcribed from telomeres - repetitive nucleotide regions found on the ends of chromosomes that function to protect DNA from deterioration or fusion with neighboring chromosomes. TERRA has been shown to be ubiquitously expressed in almost all cell types containing linear ...
The average cell will divide between 50 and 70 times before cell death. As the cell divides the telomeres on the end of the chromosome get smaller. The Hayflick limit is the theoretical limit to the number of times a cell may divide until the telomere becomes so short that division is inhibited and the cell enters senescence.
TERRA in biology is an abbreviation for "TElomeric Repeat-containing RNA". [1] TERRA is RNA that is transcribed from telomeres — the repeating 6-nucleotide sequences that cap the ends of chromosomes. TERRA functions with shelterin to inhibit telomere lengthening by enzyme telomerase. [1]
This repeat does vary across eukaryotes (see the table on the telomere article for a complete list). The enzyme consists of a protein component with reverse transcriptase activity, and an RNA component, encoded by this gene, that serves as a template for the telomere repeat. CCCUAA found near position 50 of the vertebrate TERC sequence acts as ...
GRNVAC1 isolates dendritic cells and the RNA that codes for the telomerase protein and puts them back into the patient to make cytotoxic T cells that kill the telomerase-active cells. GV1001 is a peptide from the active site of hTERT and is recognized by the immune system that reacts by killing the telomerase-active cells.
At least 100bp of DNA:RNA hybrid is required to form a stable R-loop structure. R-loops may also be created by the hybridization of mature mRNA with double-stranded DNA under conditions favoring the formation of a DNA-RNA hybrid; in this case, the intron regions (which have been spliced out of the mRNA) form single-stranded DNA loops, as they ...
In bacteria, the coding regions typically take up 88% of the genome. [1] The remaining 12% does not encode proteins, but much of it still has biological function through genes where the RNA transcript is functional (non-coding genes) and regulatory sequences, which means that almost all of the bacterial genome has a function. [1]
The enzyme complex acts through the addition of telomeric repeats to the ends of chromosomal DNA. This generates immortal cancer cells. [27] In fact, there is a strong correlation between telomerase activity and malignant tumors or cancerous cell lines. [28] Not all types of human cancer have increased telomerase activity.