Search results
Results from the WOW.Com Content Network
Noise experts and some small specialized companies have slowly developed a limited number of calculation tools, which have increased in number and become more user-friendly, covering more application cases, and adding service elements to the noise calculation tools. The noise calculation process is complex in input (gathering data, correctly ...
If the noise has expected value of zero, as is common, the denominator is its variance, the square of its standard deviation σ N. The signal and the noise must be measured the same way, for example as voltages across the same impedance. Their root mean squares can alternatively be used according to:
Friis's formula is used to calculate the total noise factor of a cascade of stages, each with its own noise factor and power gain (assuming that the impedances are matched at each stage). The total noise factor can then be used to calculate the total noise figure. The total noise factor is given as
The noise floor limits the smallest measurement that can be taken with certainty since any measured amplitude can on average be no less than the noise floor. A common way to lower the noise floor in electronics systems is to cool the system to reduce thermal noise, when this is the major noise source. In special circumstances, the noise floor ...
Figure 3. While thermal noise has an almost constant power spectral density of , a band-pass filter with bandwidth = passes only the shaded area of height and width .Note: practical filters don't have brickwall cutoffs, so the left and right edges of this area are not perfectly vertical.
Different types of noise are generated by different devices and different processes. Thermal noise is unavoidable at non-zero temperature (see fluctuation-dissipation theorem), while other types depend mostly on device type (such as shot noise, [1] [3] which needs a steep potential barrier) or manufacturing quality and semiconductor defects, such as conductance fluctuations, including 1/f noise.
Peak signal-to-noise ratio (PSNR) is an engineering term for the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation.
For thermal noise, its spectral density is given by N 0 = kT, where k is the Boltzmann constant in joules per kelvin (J/K), and T is the receiver system noise temperature in kelvins. The noise amplitude spectral density is the square root of the noise power spectral density, and is given in units such as volts per square root of hertz, /. [1] [2]