Search results
Results from the WOW.Com Content Network
The propositional calculus [a] is a branch of logic. [1] It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [b] [6] [7] [8] Sometimes, it is called first-order propositional logic [9] to contrast it with System F, but it should not be confused with ...
Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T. We can see also that, with the same premise, another conclusions are valid: columns 12, 14 and 15 are T.
In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (x) that is not defined or specified (thus being a free variable), which leaves the statement undetermined.
Example. In a given propositional logic, a formula can be defined as follows: Every propositional variable is a formula. Given a formula X, the negation ¬X is a formula. Given two formulas X and Y, and a binary connective b (such as the logical conjunction ∧), the expression (X b Y) is a formula. (Note the parentheses.)
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
For example, a paradigmatic case is the sequent calculus, which can be used to express the consequence relations of both intuitionistic logic and relevance logic. Thus, loosely speaking, a proof calculus is a template or design pattern , characterized by a certain style of formal inference, that may be specialized to produce specific formal ...
In propositional calculus a literal is simply a propositional variable or its negation.. In predicate calculus a literal is an atomic formula or its negation, where an atomic formula is a predicate symbol applied to some terms, (, …,) with the terms recursively defined starting from constant symbols, variable symbols, and function symbols.