enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    T–s (entropy vs. temperature) diagram of an isentropic process, which is a vertical line segment. ... Isentropic compression in a pump: Ideal Rankine cycle: 3→4:

  3. Diesel cycle - Wikipedia

    en.wikipedia.org/wiki/Diesel_cycle

    p–V diagram for the ideal Diesel cycle.The cycle follows the numbers 1–4 in clockwise direction. The image shows a p–V diagram for the ideal Diesel cycle; where is pressure and V the volume or the specific volume if the process is placed on a unit mass basis.

  4. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  5. Otto cycle - Wikipedia

    en.wikipedia.org/wiki/Otto_cycle

    Mechanically this is the isentropic compression of the air/fuel mixture in the cylinder, also known as the compression stroke. This isentropic process assumes that no mechanical energy is lost due to friction and no heat is transferred to or from the gas, hence the process is reversible. The compression process requires that mechanical work be ...

  6. Humphrey cycle - Wikipedia

    en.wikipedia.org/wiki/Humphrey_cycle

    The pressure-volume diagram of an idealized Humphrey cycle The Humphrey cycle is a thermodynamic cycle similar to the pulse detonation engine and pulse compression detonation system cycles. It may be considered to be a modification of the Brayton cycle in which the constant-pressure heat addition process of the Brayton cycle is replaced by a ...

  7. Pressure–volume diagram - Wikipedia

    en.wikipedia.org/wiki/Pressure–volume_diagram

    A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.

  8. Brayton cycle - Wikipedia

    en.wikipedia.org/wiki/Brayton_cycle

    Since neither the compression nor the expansion can be truly isentropic, losses through the compressor and the expander represent sources of inescapable working inefficiencies. In general, increasing the compression ratio is the most direct way to increase the overall power output of a Brayton system.

  9. Lenoir cycle - Wikipedia

    en.wikipedia.org/wiki/Lenoir_cycle

    Comparing this to the Otto cycle's efficiency graphically, it can be seen that the Otto cycle is more efficient at a given compression ratio. Alternatively, using the relationship given by process 2–3, the efficiency can be put in terms of r p = p 2 / p 3 , the pressure ratio , [ 2 ]