Search results
Results from the WOW.Com Content Network
The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k). m is smoother than n if the largest prime factor of m is below the largest of n.
The sum of its factors (including one and itself) sum to 360, exactly three times 120. Perfect numbers are order two ( 2-perfect ) by the same definition. 120 is the sum of a twin prime pair (59 + 61) and the sum of four consecutive prime numbers (23 + 29 + 31 + 37), four consecutive powers of two (8 + 16 + 32 + 64), and four consecutive powers ...
The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...
This is a list of articles about prime numbers.A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers.
For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.
If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100:
25 hostess gifts from Walmart are way better than a bottle of wine
The square-free part is 7, the square-free factor such that the quotient is a square is 3 ⋅ 7 = 21, and the largest square-free factor is 2 ⋅ 3 ⋅ 5 ⋅ 7 = 210. No algorithm is known for computing any of these square-free factors which is faster than computing the complete prime factorization.