Search results
Results from the WOW.Com Content Network
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
Mars comes closer to Earth more than any other planet save Venus at its nearest—56 million km is the closest distance between Mars and Earth, whereas the closest Venus comes to Earth is 40 million km. Mars comes closest to Earth every other year, around the time of its opposition, when Earth is sweeping between the Sun and Mars. Extra-close ...
On this assumption, a two-year return is not possible for some years, and for some years a delta-v kick of 0.6 to 2.7 km/s at Mars may be needed to get back to Earth. [10] NASA published the Design Reference Architecture 5.0 for Mars in 2009, advocating a 174-day transfer to Mars, which is close to Zubrin's proposed trajectory. [11]
Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.
For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. [44] [54] Mars's iron and nickel core is completely molten, with no solid inner core. [55] [56] It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen. [57] [58]
The quadrangles appear as rectangles on maps based on a cylindrical map projection, [1] but their actual shapes on the curved surface of Mars are more complicated Saccheri quadrilaterals. The sixteen equatorial quadrangles are the smallest, with surface areas of 4,500,000 square kilometres (1,700,000 sq mi) each, while the twelve mid-latitude ...