Search results
Results from the WOW.Com Content Network
Description. The simplest and most common form of mathematical induction infers that a statement involving a natural number n (that is, an integer n ≥ 0 or 1) holds for all values of n. The proof consists of two steps: The base case (or initial case): prove that the statement holds for 0, or 1. The induction step (or inductive step, or step ...
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.
A proof is given by induction. The base case with n = 1 is trivial, since it is equivalent to ... of the formula at induction step n = n with ...
Calculus. In calculus, the general Leibniz rule, [1] named after Gottfried Wilhelm Leibniz, generalizes the product rule (which is also known as "Leibniz's rule"). It states that if and are n -times differentiable functions, then the product is also n -times differentiable and its n -th derivative is given by where is the binomial coefficient ...
Structural induction. Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction.
We can use Boole's Inequality to solve this problem. By finding the complement of event "all five are good", we can change this question into another condition: P( at least one estimation is bad) = 0.05 ≤ P( A 1 is bad) + P( A 2 is bad) + P( A 3 is bad) + P( A 4 is bad) + P( A 5 is bad) One way is to make each of them equal to 0.05/5 = 0.01 ...
Rearrangement inequality. In mathematics, the rearrangement inequality[1] states that for every choice of real numbers and every permutation of the numbers we have. Informally, this means that in these types of sums, the largest sum is achieved by pairing large values with large values, and the smallest sum is achieved by pairing small values ...