Search results
Results from the WOW.Com Content Network
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...
b c is the colligative molality, calculated by taking dissociation into account since the boiling point elevation is a colligative property, dependent on the number of particles in solution. This is most easily done by using the van 't Hoff factor i as b c = b solute · i, where b solute is the molality of the solution. [2]
Henry's law. In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century.
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution.
Apparent molar property. In thermodynamics, an apparent molar property of a solution component in a mixture or solution is a quantity defined with the purpose of isolating the contribution of each component to the non-ideality of the mixture. It shows the change in the corresponding solution property (for example, volume) per mole of that ...
Colligative properties. In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. [1] The number ratio can be related to the various units for concentration of a ...