Search results
Results from the WOW.Com Content Network
One record from this search is that 3 325 581 707 333 960 528 is the smallest number that cannot be written as a sum of two primes where one is smaller than 9781. [25] Cully-Hugill and Dudek prove [26] a (partial and conditional) result on the Riemann hypothesis: there exists a sum of two odd primes in the interval (x, x + 9696 log^2 x] for all ...
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...
Problem II.8 of the Arithmetica asks how a given square number is split into two other squares; in other words, for a given rational number k, find rational numbers u and v such that k 2 = u 2 + v 2. Diophantus shows how to solve this sum-of-squares problem for k = 4 (the solutions being u = 16/5 and v = 12/5). [29]
In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes. For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1][2] For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously ...
The Ages of Three Children puzzle (sometimes referred to as the Census-Taker Problem[1]) is a logical puzzle in number theory which on first inspection seems to have insufficient information to solve. However, with closer examination and persistence by the solver, the question reveals its hidden mathematical clues, especially when the solver ...
Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 72 + 492. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.
The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates. Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares) The British flag theorem for rectangles equates two sums of two squares.