enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kruskal's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_algorithm

    Kruskal's algorithm. Kruskal's algorithm[1] finds a minimum spanning forest of an undirected edge-weighted graph. If the graph is connected, it finds a minimum spanning tree. It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2] The key steps of the algorithm are sorting and the use ...

  3. Distributed minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Distributed_minimum...

    For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.

  4. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    This algorithm, also known as the "recursive backtracker" algorithm, is a randomized version of the depth-first search algorithm. Frequently implemented with a stack, this approach is one of the simplest ways to generate a maze using a computer. Consider the space for a maze being a large grid of cells (like a large chess board), each cell ...

  5. Reverse-delete algorithm - Wikipedia

    en.wikipedia.org/wiki/Reverse-delete_algorithm

    Reverse-delete algorithm. The reverse-delete algorithm is an algorithm in graph theory used to obtain a minimum spanning tree from a given connected, edge-weighted graph. It first appeared in Kruskal (1956), but it should not be confused with Kruskal's algorithm which appears in the same paper. If the graph is disconnected, this algorithm will ...

  6. Kruskal's tree theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_tree_theorem

    The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.

  7. Disjoint-set data structure - Wikipedia

    en.wikipedia.org/wiki/Disjoint-set_data_structure

    A demo for Union-Find when using Kruskal's algorithm to find minimum spanning tree. Disjoint-set data structures model the partitioning of a set, for example to keep track of the connected components of an undirected graph. This model can then be used to determine whether two vertices belong to the same component, or whether adding an edge ...

  8. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    The naive algorithm for single linkage clustering is essentially the same as Kruskal's algorithm for minimum spanning trees. However, in single linkage clustering, the order in which clusters are formed is important, while for minimum spanning trees what matters is the set of pairs of points that form distances chosen by the algorithm.

  9. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    It is also very advisable to give the algorithm (e.g., Kruskal, Mather), which is often defined by the program used (sometimes replacing the algorithm report), if you have given a start configuration or had a random choice, the number of runs, the assessment of dimensionality, the Monte Carlo method results, the number of iterations, the ...