enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kruskal's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_algorithm

    For a graph with E edges and V vertices, Kruskal's algorithm can be shown to run in time O(E log E) time, with simple data structures. Here, O expresses the time in big O notation , and log is a logarithm to any base (since inside O -notation logarithms to all bases are equivalent, because they are the same up to a constant factor).

  3. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    An animation of generating a 30 by 20 maze using Kruskal's algorithm. This algorithm is a randomized version of Kruskal's algorithm. Create a list of all walls, and create a set for each cell, each containing just that one cell. For each wall, in some random order: If the cells divided by this wall belong to distinct sets: Remove the current wall.

  4. Disjoint-set data structure - Wikipedia

    en.wikipedia.org/wiki/Disjoint-set_data_structure

    A demo for Union-Find when using Kruskal's algorithm to find minimum spanning tree. Disjoint-set data structures model the partitioning of a set, for example to keep track of the connected components of an undirected graph. This model can then be used to determine whether two vertices belong to the same component, or whether adding an edge ...

  5. Minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree

    Its run-time is either O(m log n) or O(m + n log n), depending on the data-structures used. A third algorithm commonly in use is Kruskal's algorithm, which also takes O(m log n) time. A fourth algorithm, not as commonly used, is the reverse-delete algorithm, which is the reverse of Kruskal's algorithm.

  6. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    Prim's algorithm. In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree ...

  7. Euclidean minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Euclidean_minimum_spanning...

    These algorithms can be made to take time () on complete graphs, unlike another common choice, Kruskal's algorithm, which is slower because it involves sorting all distances. [13] For points in low-dimensional spaces, the problem may be solved more quickly, as detailed below.

  8. Joseph Kruskal - Wikipedia

    en.wikipedia.org/wiki/Joseph_Kruskal

    In statistics, Kruskal's most influential work is his seminal contribution to the formulation of multidimensional scaling. In computer science, his best known work is Kruskal's algorithm for computing the minimal spanning tree (MST) of a weighted graph. The algorithm first orders the edges by weight and then proceeds through the ordered list ...

  9. Steiner tree problem - Wikipedia

    en.wikipedia.org/wiki/Steiner_tree_problem

    The Steiner point S is located at the Fermat point of the triangle ABC. In combinatorial mathematics, the Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all ...